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1 Introduction

The U.S. Census Bureau’s Small Area Health Insurance Estimates Program (SAHIE) produces estimates
of the numbers and proportions with and without health insurance by income and demographic domains
within states or counties. SAHIE uses estimates from the American Community Survey (ACS) as data in the
models. In 2012, the National Opinion Research Center (NORC) reviewed the SAHIE methodology. One of
NORC’s recommendations was that SAHIE investigate the use of a generalized variance function (gvf) to
estimate the ACS survey variances outside of the estimation of the rest of the model. This paper reports
results of that investigation.

2 The SAHIE model

SAHIE produces estimates of the numbers by income and demographic domains within states or counties.
For states, the demographic groups are defined by age, race, sex and income group; for counties, they are
defined by age, sex and income group. The income groups are defined by the ”income to poverty ratio”
(IPR), which is the ratio of family income to the federal poverty threshold appropriate for that family. We
fit models separately for states and counties except that county estimates are controlled to state estimates
that are themselves controlled to national level estimates from the American Community Survey (ACS).

The SAHIE model consists of two largely distinct submodels, one for estimating proportions in IPR cate-
gories within state/age/race/sex or county/age/sex groups, and one for estimating proportions with health
insurance within state/age/race/sex/IPR or county/age/sex/IPR categories. In each part of the model,
survey data and administrative data are modeled, conditional on the true proportions. The base level of
modeling includes the full cross-classification of: five age groups, four race groups (for states), two sexes,
and five IPR categories.2

SAHIE uses ACS estimates as data in the model. We model the ACS estimates of proportions in income
groups, and of proportions with health insurance within those income groups. The current model for the
ACS estimates is as follows. Let a index a state/age/race/sex or county/age/sex group, and let i index an
IPR category. Let Sa be sample size in the ath state/age/race/sex group.3 Let p̂ IPR

ai be the ACS estimate
of the proportion, pIPR

ai , in income category i within group a. The model for p̂ IPR
ai , conditional on pIPR

ai and

1This report is released to inform interested parties of ongoing research and to encourage discussion of work in progress.
Any views expressed on statistical, methodological, technical, or operational issues are those of the authors and not necessarily
those of the U.S. Census Bureau.

2Many of the estimates we release are aggregates over these base-level classifications.
3Here and elsewhere, we use ‘sample size’ to refer to an unweighted ACS person count.
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parameters, is given by(
p̂ IPR

a1 , . . . , p̂ IPR

a4

)′ | pIPR

a1 , . . . , p
IPR

a4 , λ0, λ1 (1)

∼ N ((pIPR

a1 , . . . , p
IPR

a4 )′, ΣIPR

a ) (2)

(ΣIPR

a )ii =
λ0p

IPR
ai (1− pIPR

ai )

Sλ1
a

, i = 1, . . . , 4 (3)

(ΣIPR

a )ij = ρaij

√
(ΣIPR

a )ii (ΣIPR
a )jj , i 6= j (4)

where ρaij = −

√
pIPR
ai p

IPR
aj

(1− pIPR
ai )(1− pIPR

aj )
. (5)

Note that in (3) the survey sampling variance is modeled, and the parameters λ0 and λ1 are estimated
jointly with the rest of the unknowns in the SAHIE model. In addition, (5) expresses the assumption that
the correlations among the survey estimates p̂ IPR

a1 , . . . , p̂ IPR
a4 are those of a multinomial.

Let p̂ IC
ai be the ACS estimate of pIC

ai, the proportion insured in the ith IPR category within the state/age/race/sex
or county/age/sex group a. Let Sai be the sample size in group a, IPR category i. The model for p̂ IC

ai , con-
ditional on pIC

ai and parameters, is as follows:

p̂IC

ai| pIC

ai, λ0, λ1, ζ0, ζ1


= 0 with probability p

(0)
ai

= 1 with probability p
(1)
ai

∼ Beta(aai, bai) with probability 1− p(0)ai − p
(1)
ai

(6)

with

E(p̂ IC

ai | pIC

ai) = pIC

ai (7)

var(p̂ IC

ai | pIC

ai, λ0, λ1) =
λ0p

IC
ai(1− pIC

ai)

Sλ1
ai

(8)

p
(0)
ai = (1− pIC

ai)
1+ζ0(Sai−1) (9)

p
(1)
ai = (pIC

ai)
1+ζ1(Sai−1) . (10)

The parameters λ0, λ1, ζ0 and ζ1 are unknown and allowed to vary by demographic group. The parameters

aai and bai are functions of the mean and variance of p̂ IC
ai together with p

(0)
ai and p

(1)
ai . In equation (8), the

ACS sampling variance is modeled jointly with other unknowns in the SAHIE model.

The alternative we consider here is to replace the model for (ΣIPR
a )ii in (3) and the model for var(p̂ IC

ai ) in (8)
with plugged-in estimates from a gvf.

3 Variance modeling

3.1 Design effects

It is useful to think of sampling variances of survey estimates in terms of design effects. We define the design
effect of a survey estimator x̂ to be

deff(x̂) =
variance of x̂

variance of x̂ under simple random sampling
.
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In the present paper, we are concerned with ACS estimates of proportions. We define the design effect of an
estimator, p̂, of a proportion p to be

deff(p̂) =
var(p̂)

p(1− p)/S
(11)

where S is the relevant sample size. For our purposes, S is the unweighted count of people in sample in the
domain that constitutes the denominator of the rate.

For our analyses, we use estimates of the design effect:

d̂eff(p̂) =
v̂ar(p̂)

p̂(1− p̂)/S
. (12)

For the research here, we model the variances by modeling the design effects. The models are of the form

log(d̂eff) = States + (zai)
T γ + εai (13)

where the state effects, States, might not be included, and zai may contain predictors in addition to indicators
of age, race, sex and income category and their interactions. We then assume the sampling variance to be

var(p̂ai) =
pai(1− pai)

Sai
deffai . (14)

If zai does not contain the sample size, then the variance varies inversely with the sample size. If zai does
not include pai then the variance is proportional to pai(1− pai).

3.2 ACS variance estimation

We use estimates of ACS variances. The ACS employs the successive differences replication method (U.S.
Census Bureau (U.S. Census Bureau (2009)), Chapter 12; Judkins (Judkins (1990))) to produce estimates
of the variances of its estimates. The method involves 80 replicates.

4 Analysis of design effects for p̂ IC

In this section we report results of exploratory analyses of design effects. We begin by considering the
variances of p̂ IC

ai , the estimates of the proportion insured. Figure 1 contains boxplots for states and counties
of estimated design effects against sextile of sample size, with separate plots by income category and by age
group.4 For consistency among plots, we take sextiles over sample sizes for all observations, rather than
within the income and age categories. As a result, the boxes do not generally represent the same number of
points.

From Figure 1, it appears that the design effects increase with increasing sample size. Thus it appears that
the variances decrease at a rate of less than the inverse of the sample size. There does not appear to be
much difference between IPR categories.

The plots for states and counties look different, especially in the highest two IPR categories. However,
note that the boxes represent different sample sizes between states and counties. Some, but not all of the
difference in appearance between the state and county plots may be due to the fact that the first box for
states contains the sample sizes of several boxes for counties. Increases in design effects for the larger sample
sizes that can be seen in the plots for states cannot be seen in the plots for counties, because there are fewer
large sample sizes for counties.

Figure 2 contains similar plots by age. The variances for the lowest age group behave differently from those
for the other age groups. This is likely due to clustering. Within housing units, income level and insured

4Here, and in all plots, estimated design effects are bottom- and top- coded at 0.25 and 4 respectively.
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status are highly correlated within age/sex groups. It is relatively rare that two adults in the same housing
unit are in the same age and sex group. It is less rare, in households with children, that two children of the
same sex are in the same household. In the ACS sample for 2010, among housing units in which there is at
least one male age 0 to 17, there is an average of 1.4 males age 0 to 17 in the housing unit. The average is
1.4 for females age 0 to 17 as well. In each other age/sex group used in SAHIE, in housing units in which
there is at least one person in the age/sex group, the mean number in that age/sex group per housing unit
is 1.0 for males or 1.1 for females. The numbers are similar when broken into age/race/sex groups.

Figure 3 contains plots similar to those in Figure 2, but by race. The variances do not appear to behave
much differently by race.

4.1 Behavior of variance estimates for different ranges of proportions

Figure 4 contains boxplots of design effects against sextile of sample size, with separate plots by sextile of p̂ IC.
We note that the dependence of the estimated design effects on sample size becomes much more pronounced
as the p̂ IC’s approach 1.0. In addition, for p̂ IC intervals closer to one, the design effects appear unreasonable
at low sample sizes. For states, when p̂ IC is larger than 0.94, the large majority of design effect estimates
in the first sextile of sample sizes, containing sample sizes between two and 17,5 are smaller than 1.0, and
the majority of design effect estimates are less than 1.0 in the second sextile, containing sample sizes 18 to
43. Even in the sextile of p̂ IC covering 0.88 to 0.94, the majority of design effects are smaller than 1.0 for
the smallest sextile of sample sizes. In these two intervals of p̂ IC, the design effect variances approach 2.0
for large sample sizes. For p̂ IC smaller than about 0.7, the design effect estimates show little dependence on
sample size. Design effect estimates behave similarly for counties.

In Figure 5, we look at the phenomenon of the previous paragraph in another way. The figure contains
boxplots against sextile of p̂ IC, with separate plots by sample size sextile. We see that for small sample sizes,
the design effect estimates get small for p̂ IC close to 1.0.

4.2 Discussion

Some of the results shown above indicate weaknesses in the variance estimation method, and suggest that
we leave some observations out when using variance estimates in models aimed at predicting variances.

We expect design effects generally to be larger than 1.0. We expect clustering, nonresponse, and factors such
as reweighting that go into creating estimates, generally to increase the variances of estimates from what
they would have been under simple random sampling. Design effects could be less than one due to the fact
that some totals are controlled. But we expect it to be rare that controls substantially reduce design effects
for the small domains at which SAHIE estimates, especially where sample sizes are small.

Instead, we conclude from the plots in Figures 4 and 5 that for combinations small sample size and p̂ IC close to
one, the variances are generally underestimated. Note that for largest sextiles of p̂ IC, the variance estimates
appear generally to be unreasonably low even for moderate sample sizes. For example, Figure 5 shows
that for p̂ IC between 0.93 and 1.0, the median estimated design effect is smaller than 1.0 for observations
with sample sizes between 25 to 51. Similarly, for small sample sizes, variance estimates appear generally
unreasonable for p̂ IC’s relatively far from 1.0, for example, in the second highest sextile of p̂ IC’s.

Because the variance estimates often appear to be unreasonably small for small samples and for proportions
close to one, it appears that a small unweighted count in the uninsured group is an indication that the
variance estimate is likely to behave badly. That unweighted count is small for small samples, and also is
small for larger samples when the estimated proportion is close to 1.0. Figure 6 contains plots by sextile of
the unweighed uninsured count of the estimated design effects against sextiles of the estimated proportion
insured. From these plots, it appears that the variance estimates behave reasonably when the unweighted
count is around five or more.

5We leave observations with sample sizes of one out, because they have replicate variance estimates of zero.
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Finally, we note that even when the sample sizes are large, there appears to be some dependence of design
effect on the proportions. This suggests that the variance of p̂ IC is not proportional to p̂ IC(1− p̂ IC).
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Figure 1. Boxplots of p̂ IC estimated design effects against sextile of sample size, by IPR category. For states
(top) and counties (bottom). Here, and in all plots, boxes extend from the first to third quartiles, and design effect
estimates are bottom- and top- coded at 0.25 and 4 respectively. Source: ACS 2010 unpublished estimates.
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Figure 2. Boxplots of p̂ IC estimated design effects against sextile of sample size, by age category for states (top)
and counties (bottom). Source: ACS 2010 unpublished estimates.
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Figure 3. Boxplots of p̂ IC estimated design effects for state estimates against sextile of sample size, by race. Source:
ACS 2010 unpublished estimates.

4.3 State effects

Figure 7 contains boxplots by state of design effects for p̂ IC, for state estimates and for county estimates.
The design effects appear to be relatively consistent by state. The design effects for county estimates appear
different for the seventh least populated state. That state is Delaware and has only three counties. Thus its
box is based on a small number of points, and its difference could be due to randomness.
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Figure 4. Boxplots of p̂ IC estimated design effects against sextile of sample size, by sextile of p̂ IC. For states (top)
and counties (bottom). Source: ACS 2010 unpublished estimates.
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Figure 5. Boxplots of p̂ IC estimated design effects against sextile of p̂ IC by sextile of sample size. For states (top)
and counties (bottom). Source: ACS 2010 unpublished estimates.
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Figure 6. Plots of estimated design effects for ACS p̂ IC vs. p̂ IC, by sextile of the unweighted count of number
uninsured. For states (top) and counties (bottom). Source: ACS 2010 unpublished estimates.
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5 Analysis of design effects for p̂ IPR

In this section, we look at design effect estimates for p̂ IPR
ai , the estimate of the proportion in the IPR category,

i, among those in state/age/race/sex or county/age/sex group a. Recall that for a given a,
∑5
i=1 p̂

IPR
ai = 1.

Figure 8 contains boxplots by IPR category of p̂ IPR design effects, against sextile of state/age/race/sex or
county/age/sex sample size. The patterns are similar to those for p̂ IC. There appears to be some upward
trend against sample size, suggesting that variances decrease less quickly than the inverse of the sample size.
In Figures 9 and 10, we plot design effect estimates for states and counties against p̂ IPR for the five IPR
categories for selected sample size groups. Note that these sample size groups are not quantiles. Unlike
proportions insured, the proportions in the IPR categories are rarely near 1.0. However, they can be near
zero. As the proportions get close to zero, we see a pattern similar to that for proportions insured near 1.0.
For small samples, the design effects become unreasonably small.
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Figure 8. Boxplots of estimated design effects for ACS p̂ IPR vs. sextile of sample size, by IPR category. For states
(top) and counties (bottom). Source: ACS 2010 unpublished estimates.

13



0.05 0.20 0.50

0.
5

2.
0

p̂IP
R
de

s.
 e

ffe
ct

0.05 0.20 0.50

0.
5

2.
0

0.1 0.2 0.5

0.
5

2.
0

0.01 0.05 0.20

0.
5

2.
0

0.01 0.05 0.20

0.
5

2.
0

p̂IP
R
de

s.
 e

ffe
ct

0.01 0.05 0.20

0.
5

2.
0

0.02 0.05 0.10 0.20

0.
5

2.
0

0.01 0.05 0.20

0.
5

2.
0

0.01 0.05 0.20 1.00

0.
5

2.
0

p̂IP
R
de

s.
 e

ffe
ct

0.01 0.05 0.20

0.
5

2.
0

0.02 0.05 0.10 0.20

0.
5

2.
0

0.01 0.05 0.20

0.
5

2.
0

0.01 0.05 0.20

0.
5

2.
0

p̂IP
R
de

s.
 e

ffe
ct

0.005 0.020 0.100 0.500

0.
5

2.
0

0.1 0.2 0.3

0.
5

2.
0

0.05 0.10 0.20

0.
5

2.
0

0.002 0.020 0.200

0.
5

2.
0

ACS p̂
IPR

p̂IP
R
de

s.
 e

ffe
ct

0.01 0.05 0.20

0.
5

2.
0

ACS p̂
IPR

0.05 0.10 0.20 0.50

0.
5

2.
0

ACS p̂
IPR

0.05 0.20 0.50

0.
5

2.
0

ACS p̂
IPR

sample: 2 − 25 sample: 25 − 60 sample: 60 − 120 sample: 120 − 26538

IP
R

: 
0−

13
8

IP
R

: 
13

8−
20

0
IP

R
: 

20
0−

25
0

IP
R

: 
25

0−
40

0
IP

R
: 

40
0+

Figure 9. Plots of estimated design effects for ACS p̂ IPR vs. p̂ IPR, by sample size group and IPR category. States.
Source: ACS 2010 unpublished estimates.

14



0.002 0.020 0.200

0.
5

2.
0

p̂IP
R
de

s.
 e

ffe
ct

0.005 0.050 0.500

0.
5

2.
0

0.01 0.05 0.20

0.
5

2.
0

0.02 0.05 0.20 0.50

0.
5

2.
0

0.005 0.050 0.500

0.
5

2.
0

p̂IP
R
de

s.
 e

ffe
ct

0.005 0.050 0.500

0.
5

2.
0

0.002 0.010 0.050

0.
5

2.
0

0.01 0.05 0.20

0.
5

2.
0

0.002 0.020 0.200

0.
5

2.
0

p̂IP
R
de

s.
 e

ffe
ct

0.002 0.010 0.050 0.500

0.
5

2.
0

0.001 0.010 0.100

0.
5

2.
0

0.005 0.020 0.100

0.
5

2.
0

0.005 0.050 0.500

0.
5

2.
0

p̂IP
R
de

s.
 e

ffe
ct

0.01 0.05 0.20

0.
5

2.
0

0.05 0.20 0.50

0.
5

2.
0

0.05 0.10 0.20 0.50

0.
5

2.
0

0.002 0.020 0.200

0.
5

2.
0

ACS p̂
IPR

p̂IP
R
de

s.
 e

ffe
ct

0.005 0.050 0.500

0.
5

2.
0

ACS p̂
IPR

0.005 0.050 0.500

0.
5

2.
0

ACS p̂
IPR

0.05 0.20 0.50

0.
5

2.
0

ACS p̂
IPR

sample: 2 − 25 sample: 25 − 60 sample: 60 − 120 sample: 120 − 17769

IP
R

: 
0−

13
8

IP
R

: 
13

8−
20

0
IP

R
: 

20
0−

25
0

IP
R

: 
25

0−
40

0
IP

R
: 

40
0+

Figure 10. Plots of estimated design effects for ACS p̂ IPR vs. p̂ IPR, by sample size group and IPR category.
Counties. Source: ACS 2010 unpublished estimates.
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6 Modeling design effects

In this section, we report results from running regression models to estimate parameters in variance function
models. We model the replicate-based variance estimates. We know these are unreliable in some cases, and
some plots above suggest systematic bias as well. We want to drop cases where there is substantial bias, and
weight the regression to accommodate difference in reliabilities.

6.1 Weighting the regression and dropping cases

We expect reliability to be positively related to sample size. Huang and Bell (Huang and Bell (2009)) use
simulations to examine properties of the variance estimation procedure “Fay’s method”) used in the ACS.
In particular, they estimate the degrees of freedom of Fay’s estimator, under the assumption that it has a
χ2
k distribution. Under that interpretation, the relative variance is two divided by the degrees of freedom,
k. They argue, based on the design and number of replicates, that k should be bounded above by 78. In
particular, the variance of the variance estimator does not go to zero as the sample size increases. In their
simulation studies for Bernoulli populations, they found that for p = 0.25, k increased approximately linearly
with sample size up to approximately 78. Above 78, k continued to increase, but more slowly as sample
size increased (they considered sample sizes up to 780). For other values of p, the pattern is similar, but for
smaller p the rate of increase of k is smaller with respect to sample size, and is close to linear for a larger
range of values.

Based on the findings of Huang and Bell, for weighting purposes we assume that the inverse of the variance
of the variance estimates increases linearly with sample size up to sample size 1000, and is constant after
that. We thus weight observations in the regressions by the minimum of 1000 and the sample size.

Based on the findings in Figure 5, we remove cases where the unweighted count uninsured is less than five
when modeling the variance of p̂ IC. We assume that variances of p̂ IPR behave similarly, and remove cases in
which the unweighted count in the IPR category is less than five when modeling the variance of p̂ IPR. This
eliminates some cases where there was a fairly clear and substantial downward bias.

In another study, Huang and Bell (Huang and Bell (2010)) conduct simulation studies to assess the bias of
several variance estimators, including Fay’s method used here. For Bernoulli data, they did simulations for
p = 0.08 and p = 0.25. They found that Fay’s method is biased downward for small samples, but that the
bias is negligible for sample sizes larger than 50. For modeling the variances of p̂ IC here, we exclude cases
where either the unweighted count uninsured is less than five, or the sample size (the unweighted count in
the state/age/race/sex/IPR or county/age/sex/IPR category) is less than or equal to 50. For modeling the
variances of p̂ IPR, we exclude cases where the unweighted count in the IPR category is less than five, or the
sample size (the unweighted count in the state/age/race/sex or county/age/sex group) is less than or equal
to 50.

6.2 Matching the SAHIE parameterization for p̂ IC

We begin modeling the design effects for p̂ IC by matching the model assumed in SAHIE. In current SAHIE
modeling, we assume that

var(p̂ IC

ai ) = λ0
pIC
ai(1− pIC

ai)

Sλ1
ai

. (15)

For states, both λ0 and λ1 vary by two age and three IPR categories. For counties, λ0 varies by two age and
three IPR categories, but λ1 varies only by three IPR categories.

Here, we fit the model

log
(

d̂eff
IC

ai

)
= α+ β log(sample size) + εai (16)
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where α and β are allowed to vary in the same way as λ0 and λ1. The exponential of α corresponds to λ0
of (15). The value of 1 − β corresponds to λ1, because the design effect already has the sample size in its
denominator.

Table 1 contains estimates of λ0 and λ1 for states from SAHIE 2010, and results from fitting model (16),
transforming α and β to be comparable to λ0 and λ1. We find that the estimates of λ1 from fitting the
design effect model are significantly smaller than 1.0 as they are in SAHIE. Table 2 contains similar results
from SAHIE and the design effect model for counties. In this case, the estimates of λ1 from fitting the design
effect model are much closer to 1.0 than they were for SAHIE. Correspondingly, the estimates from fitting
the design effect model are larger for λ0.

Table 1. Posterior means and standard deviations for parameters in the p̂ IC variance function from SAHIE 2010, and
corresponding parameter estimates from a GVF model using direct variance estimates. Based on 5,158 observations,
for states.

SAHIE SAHIE GVF GVF
parameter age IPR mean st. dev. est. st. err.

λ0 0-18 0-200 1.201 0.058 1.011 0.062
0-18 200-400 1.349 0.061 1.071 0.070
0-18 400+ 1.135 0.077 0.929 0.113
19-64 0-200 1.189 0.067 1.318 0.043
19-64 200-400 1.207 0.064 1.207 0.043
19-64 400+ 1.357 0.155 1.140 0.053

λ1 0-18 0-200 0.872 0.016 0.892 0.013
0-18 200-400 0.918 0.016 0.910 0.014
0-18 400+ 0.906 0.020 0.906 0.021
19-64 0-200 0.911 0.017 0.983 0.009
19-64 200-400 0.925 0.015 0.961 0.009
19-64 400+ 0.955 0.027 0.954 0.010

Source: ACS 2010 unpublished estimates, SAHIE.

Table 2. Posterior means and standard deviations for parameters in the p̂ IC variance function from SAHIE 2010, and
corresponding parameter estimates from a GVF model using direct variance estimates. Based on 9,763 observations,
for counties.

SAHIE SAHIE GVF GVF
parameter age IPR mean st. dev. est. st. err.

λ0 0-18 0-200 1.256 0.012 1.896 0.047
0-18 200-400 1.270 0.012 1.549 0.051
0-18 400+ 1.328 0.022 2.077 0.063
19-64 0-200 1.035 0.008 1.387 0.046
19-64 200-400 1.084 0.009 1.252 0.048
19-64 400+ 1.167 0.015 1.671 0.053

λ1 0-200 0.823 0.004 0.994 0.010
200-400 0.858 0.004 0.966 0.011

400+ 0.904 0.006 1.019 0.011

Source: ACS 2010 unpublished estimates, SAHIE.

6.3 Matching the SAHIE parameterization for p̂ IPR

To match the parameterization of SAHIE in modeling the design effect for p̂ IPR, We fit the model

log
(

d̂eff
IPR

ai

)
= α+ β log(sample size) + εai (17)

where α and β differ by age for states. For counties, α varies by the five ages and β varies only by two age
groups.
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Tables 3 and 4 contain results for states and counties respectively. In both cases, the estimate from the
design effect model of λ1 is significantly different from 1.0 for the 0 to 17 and 18 age groups for states and for
0 to 18 age group for counties, while it is nearly 1.0 for the adult age groups. Some of the SAHIE estimates
of λ0 seem unreasonably large. In those cases, the SAHIE estimate of λ1 is larger than 1.0, indicating that
the variance decreases faster than the inverse of the sample size. A possible explanation is that the estimates
of λ1 are substantially larger than one, which may have a large effect when the sample sizes are very large,
tending to pull the variance estimates down. The large values of λ1 may be to compensate, so that the
variance estimates for large sample sizes fit better. At least for states, for variances of p̂ IPR, it appears that
fitting a variance model to the ACS variance estimates gives more reasonable results than modeling them as
done in SAHIE. In the other cases, it appears that estimates from modeling the design effects confirm the
ways that SAHIE estimates differ from what theory suggests about the dependence of variance on sample
size. Recall that the plots, too, appear to confirm that variances decrease slower than the inverse of the
sample size.

Table 3. Posterior means and standard deviations for parameters in the p̂ IPR variance function from SAHIE 2010, and
corresponding parameter estimates from a GVF model using direct variance estimates. Based on 5,650 observations,
for states.

SAHIE SAHIE GVF GVF
parameter age mean st. dev. est. st. err.

λ0 0-17 4.981 0.998 1.404 0.037
18 1.625 0.177 1.078 0.054

19-39 3.168 0.705 1.364 0.037
40-49 1.644 0.256 1.343 0.039
50-64 2.011 0.331 1.374 0.035

λ1 0-17 1.090 0.033 0.948 0.007
18 1.022 0.028 0.947 0.011

19-39 1.096 0.038 0.983 0.007
40-49 0.998 0.029 0.994 0.008
50-64 1.056 0.031 0.997 0.007

Source: ACS 2010 unpublished estimates, SAHIE.

Table 4. Posterior means and standard deviations for parameters in the p̂ IPR variance function from SAHIE 2010, and
corresponding parameter estimates from a GVF model using direct variance estimates. Based on 54,406 observations,
for counties.

SAHIE SAHIE GVF GVF
parameter age mean st. dev. est. st. err.

λ0 0-17 1.963 0.056 1.625 0.021
18 1.257 0.022 1.109 0.022

19-39 1.384 0.029 1.430 0.013
40-49 1.243 0.024 1.365 0.013
50-64 1.205 0.026 1.346 0.013

λ1 0-18 0.951 0.007 0.954 0.005
19-64 0.938 0.005 0.988 0.003

Source: ACS 2010 unpublished estimates, SAHIE.

6.4 Dependence of design effects on the proportion

The simple random sampling variance of a proportion, p, is proportional to p(1 − p). Plots in Section 4
suggest that the design effects depend on p, in which case the variance is not proportional to p(1− p). Here,
we expand the model in (15) to include a term p(1− p)

log
(

d̂effai

)
= α+ β log(sample size) + η log( p̂ai(1− p̂ai) ) + εai . (18)
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Here, p̂ can be p̂ IC or p̂ IPR. For consistency and ease of interpretation, we allow the coefficient, η, of p̂(1− p̂)
term to vary by the same categories as the α (and hence λ0) parameter. Note that the corresponding variance
function is

var(p̂ IC

ai ) = λ0 (pIC

ai(1− pIC

ai))
1+η 1

Sλ1
ai

(19)

where λ0 = exp(α) and λ1 = 1− β. Under simple random sampling, α, β and η are all zero.

We initially fit the model for the design effects of p̂ IC for all observations with unweighted count uninsured
larger than four and sample size larger than 50, as we had done previously. Similarly, for the design effects
of p̂ IPR, we used observations with unweighted count in the IPR category larger than four, and sample size
larger than 50. We saw that the parameter estimates indicate η significantly larger than zero. Because these
results are somewhat surprising, and because the variance estimates appear to be unreliable for small sample
sizes, we fit the models again using stricter criteria for inclusion in the model fitting. For design effects for
p̂ IC, we required that the unweighted count uninsured be larger than 10 and that the sample size be larger
than 200. For the design effects for p̂ IPR, we required that the unweighted count in the IPR category be
larger than 10 and the sample size larger than 200. We report results from both fits of the models.

Table 5 contains parameter estimates for the η’s for states and counties for the model in (18), using the less
restrictive sample size criteria. Table 6 contains parameter estimates when the model was fit using the more
restrictive criteria, according to which we only include observations with an unweighted uninsured count
larger than 10 and sample size larger than 200. For these latter results, we only allowed parameters to vary
by two ages, because there were many fewer records that meet the criteria.

Table 7 contains parameter estimates for the model in (18) but for the estimates, p̂ IPR, of proportions in the
IPR categories. Table 8 contains parameter estimates for the variance of p̂ IPR, but using the stricter sample
size criteria.

When fit using the larger number of observations, the estimate of the η parameter was positive and signifi-
cantly different from zero for all categories, for both p̂ IC and p̂ IPR. These results suggest that the variance
of p̂ is proportional to p(1− p) raised to a power of between about 1.1 and 1.4.

When we fit the model using only observations meeting stricter criteria, the estimates of η become closer to
zero. For p̂ IC, the estimates remain positive and significantly different from zero for children, but effectively
zero for adults. For p̂ IPR, the estimates are still positive and significantly different from zero for both children
and adults, but not large. The estimates for adults are closer to zero than for children, as with the parameters
for variances of p̂ IC.

The results suggest that the variances decrease more rapidly as p approaches 0 or 1 than in simple random
sampling. However, we found that the estimates of the parameter η in (18) are sensitive to the choice of
observations to include in the model fitting. Because of this, it seems unclear whether the difference from
zero of estimates of η is a fact about the variances or an artifact of the variance estimation method.

6.5 The effect of collection mode

One factor that we expect to affect ACS sampling variances is the prevalence of different modes of collection.
ACS uses three modes of data collection: mail, telephone, and Computer Assisted Personal Interviewing
(CAPI) (U.S. Census Bureau U.S. Census Bureau (2009), Chapter 4). Addresses initially selected for the
sample, but from which neither a mail questionnaire nor a telephone interview has been completed, are
sampled for CAPI. The CAPI sampling rate is 67 percent for unmailable addresses (incomplete addresses
and those that refer to a post office box) and some addresses in remote Alaska. The CAPI sampling rates
range from 33 percent to 50 percent for other addresses, based on the predicted levels of completed interviews
prior to CAPI for the tract.

We expect sampling variances to be different when there is a larger proportion of CAPI cases both because
the average sampling rate is smaller, and because there will be greater variation in the sampling weights
because a greater proportion of cases will have the larger CAPI weights. The design effect models we fit
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Table 5. Parameter estimates for η in the design effect model (18), for p̂ IC. Based on 5,158 observations for states,
and 9,763 observations for counties.

geography age IPR est. st. err. Pr > |t|
state 0-18 0-200 0.199 0.020 < .0001

0-18 200-400 0.269 0.022 < .0001
0-18 400+ 0.291 0.043 < .0001

19-64 0-200 0.046 0.027 0.091
19-64 200-400 0.152 0.020 < .0001
19-64 400+ 0.234 0.022 < .0001

county 0-18 0-200 0.429 0.018 < .0001
0-18 200-400 0.366 0.024 < .0001
0-18 400+ 0.428 0.041 < .0001

19-64 0-200 0.100 0.023 < .0001
19-64 200-400 0.194 0.013 < .0001
19-64 400+ 0.293 0.016 < .0001

Source: ACS 2010 unpublished estimates.

Table 6. Parameter estimates for η in the design effect model (18), for p̂ IC. Here, only used records with an
unweighted count of uninsured larger than 10 and sample size larger than 200. Based on 2,903 observations for
states, and 2,179 observations for counties.

geography age est. st. err. Pr > |t|
state 0-18 0.156 0.015 < .0001

19-64 -0.005 0.010 0.591

county 0-18 0.169 0.021 < .0001
19-64 0.017 0.010 0.079

Source: ACS 2010 unpublished estimates.

Table 7. Parameter estimates for η in the design effect model of (18), for p̂ IPR. Based on 5,650 observations for
states, and 54,406 observations for counties.

geography age est. st. err. Pr > |t|
state 0-17 0.242 0.018 < .0001

18 0.180 0.015 < .0001
19-39 0.172 0.020 < .0001
40-49 0.121 0.017 < .0001
50-64 0.126 0.016 < .0001

county 0-17 0.329 0.006 < .0001
18 0.155 0.021 < .0001

19-39 0.217 0.006 < .0001
40-49 0.146 0.006 < .0001
50-64 0.132 0.005 < .0001

Source: ACS 2010 unpublished estimates.

Table 8. Parameter estimates for η in the design effect model of (18), for p̂ IPR. Here, only used observations with
unweighted count in the IPR category larger than 10 and sample size larger than 200. Based on 3,807 observations
for states, and 15,772 observations for counties.

geography age est. st. err. Pr > |t|
state 0-18 0.070 0.015 < .0001

19-64 0.031 0.011 0.007

county 0-18 0.059 0.010 < .0001
19-64 0.024 0.005 < .0001

Source: ACS 2010 unpublished estimates.
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already take sample size into account. But the difference in weights for the CAPI sample may have an
additional effect on sampling variances.

To assess the value of the proportion of CAPI cases in predicting sampling variances, we fit the model as in
(18), but add the proportion of CAPI cases, PCAPI, to the model. For the variances of p̂ IC, the resulting
model is

log
(

d̂effai

)
= α+ β log(Sai) + η log( p̂ IC

ai (1− p̂ IC

ai ) )

+ γPCAPIai + εai . (20)

Table 9 contains estimates of the parameter γ when we fit the model in (20), weighting observations as
before. We use the less strict criteria of a sample size larger than 50 and unweighted count uninsured larger
than four. We allowed the parameter γ to vary in the same way as α and η. Table 10 contain estimates when
using the stricter criteria of a sample size larger than 200 and unweighted count uninsured larger than 10.
As before, we allowed the parameter to vary by just two ages because of the smaller number of observations
used.

When we used the less strict criteria, for states in the 0 to 18 age group, the estimated γ̂ of coefficient of the
CAPI rate, is significantly different from zero for one of the three IPR groupings, and is positive in that case.
For the 19 to 64 age groups, γ̂ is significantly different from zero for two of the three IPR groupings, and is
negative in those cases. For counties, using the less strict criteria, the coefficient estimate, γ̂, is significantly
different from zero for two of three IPR groupings in both the 0 to 18 and 19 to 64 age groupings. In those
cases, the γ̂ is always negative. The negative parameter estimates indicate that the design effect estimates
tend to be smaller when the CAPI rate is larger, which seems surprising.

These results are confirmed when we use only observations meeting the stricter criteria. In that case, for
states, γ̂ is not significantly different from zero for the age group 0 to 18, and is negative for age grouping
19 to 64. For counties, γ is negative for both age groupings.

Table 9. Parameter estimates for γ in the design effect model of (20), for p̂ IC. Model fit using observations with
unweighted count uninsured larger than 4 and sample size larger than 50. Based on 5,158 observations for states,
and 9,763 observations for counties.

geography age IPR est. st. err. Pr > |t|
state 0-18 0-200 0.008 0.076 0.9191

0-18 200-400 0.233 0.093 0.0119
0-18 400+ 0.147 0.238 0.5369

19-64 0-200 -0.065 0.046 0.1603
19-64 200-400 -0.223 0.059 0.0001
19-64 400+ -0.260 0.119 0.0286

county 0-18 0-200 -0.325 0.064 < 0.0001
0-18 200-400 -0.468 0.117 0.0001
0-18 400+ 0.097 0.451 0.8297

19-64 0-200 0.023 0.045 0.6088
19-64 200-400 -0.409 0.062 < 0.0001
19-64 400+ -0.299 0.118 0.0111

Source: ACS 2010 unpublished estimates.
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Table 10. Parameter estimates for γ in the design effect model of (20), for p̂ IC. Here, the model was fit using
only observations with unweighted count uninsured larger than 10 and sample size larger than 200. Based on 2,903
observations for states, and 2,179 observations for counties.

geography age est. st. err. Pr > |t|
state 0-18 -0.066 0.069 0.3409

19-64 -0.297 0.051 < .0001

county 0-18 -0.533 0.097 < .0001
19-64 -0.276 0.075 0.0002

Source: ACS 2010 unpublished estimates.

7 Summary and questions raised

In this paper, we considered using direct estimates of ACS sampling variances in developing models to predict
ACS sampling variances. This is a different approach from that currently used in SAHIE, in which direct
sampling variance estimates are not used, and instead a parametric function for sampling variances is fit
jointly with the rest of the unknowns in SAHIE estimation.

We note here some findings from the research, and questions raised.

• Some confirmation of SAHIE parameter estimates. One reason to consider such a model is
that some parameter estimates from SAHIE appear different than theory would suggest. This possibly
indicates model misspecification in SAHIE. In particular, in several cases, SAHIE parameter estimates
imply that sampling variances decrease with sample size at a rate slower than the inverse of the sample
size. However, exploratory analysis of design effects based on direct variance estimates appear to
confirm that sampling variances do decrease at a rate slower than the inverse of the sampling variance.
Fitting a model to the direct variance estimates appears to confirm this, although the parameter
estimates from modeling the direct variance estimates imply that sampling variances decrease at a
rate closer to the inverse of the sampling variance than do SAHIE estimates. These results raise some
questions: Is there sampling theory that could explain that variances decrease at a rate slower than
the inverse of the sample size? If not, is there something about the variance estimation procedure that
explains the appearance that the variances decrease at a rate slower than the inverse of the sample
size?

• An unexpected dependence on the term p(1 − p). In SAHIE, we model ACS estimates of
two proportions. A notable finding from fitting a model to the direct variance estimates is that the
variances of either of the proportions, p, are not proportional to p(1−p). Instead, the variances appear
to be proportional to p(1 − p) raised to a power larger than one. This raises questions: Is there a
sampling model that would explain that the variance of the estimate of a proportion, p, decreases as p
approaches zero or one more rapidly than p(1− p)? If not, is there an explanation of why the variance
estimation procedure results in estimates of variances that approach zero and one more rapidly than
theory predicts?

• Biases in variance estimates and how to handle them. There are issues evident here for an
approach that models sampling variance estimates to predict sampling variances. Previous research
(e.g. Huang and Bell (2010)) had shown bias in the direct variance estimates for small sample sizes.
The research in the present paper (in Figures 4, 5, 9, 10) suggests that the bias for the estimate
of a proportion is more pronounced as the proportion approaches zero or one. These results suggest
dropping from the model observations with small sample sizes or small counts related to the proportion
of interest. We fit models restricting the observations to those with sample sizes at which Huang and
Bell noted negligible bias. But when we refit the models, using stricter criteria on sample sizes, we
get different estimates. This raises a question: If we are to fit variance models using only observations
fitting some criteria, what criteria should we use? Further, if those criteria involve omitting observations
with small sample sizes, then we would likely assume that the same model can be extrapolated from
large sample sizes to small sample sizes. Can that assumption be justified or verified? Note that this
latter question applies to the current SAHIE procedure under which sampling variances are modeled.
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But while it is true that SAHIE, too, assumes a single model for large and small sample sizes, SAHIE
modeling at least allows all observations to be relevant to the modeling.

• General issue raised by some of the previous questions. When using estimates of sampling
variances, what are artifacts of the estimation procedure and what are truly features of the sampling
variances?
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